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Abstract

This paper presents a theoretical and experimental study of the active vibration control of a simply supported beam

using a piezoelectric patch actuator and a physically collocated accelerometer. Direct velocity feedback (DVFB) control is

used to attenuate unwanted vibrations in a given frequency band. The performance of the control system is presented in

terms of the total vibrational kinetic energy of the beam and compared to the fundamental limitation, for the particular

actuator, by way of a feedforward control analysis.

Since the sensor and actuator are not collocated in the control sense, the control system is only conditionally stable. The

stability is also influenced by the actual control system electronics and the transducer dynamics, which results in even lower

stability margins. It is shown in this paper that for a given electronics system and transducer arrangement, improvements

can be made by inserting a concentrated mass at the sensor location so as to cause an additional roll-off of the open-loop

frequency response function at higher frequencies. This improves the stability margin of the overall control system and

hence permits a higher control gain.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The theory of active control of flexible structures is a well-established technique. This may be achieved
either by feedforward or feedback control strategies, and a comprehensive review of such systems has been
conducted by Alkhatib and Golnaraghi [1]. The feedforward technique [2] is often used whenever a signal
correlated to the disturbance is available. In the most ideal case, the disturbance can be completely eliminated
at the location of the sensors (local control), but there is no guarantee that the global response is also reduced.
Active damping is usually achieved using feedback controllers [3,4] and aims to reduce the vibration at
frequencies close to structural resonances, thus achieving global control.

To the authors’ knowledge, the active control of beam vibrations was first introduced by Rockwell and
Lawther [5] in 1964, and in 1987 a comprehensive review of this subject was conducted by Mace [6]. The active
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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damping of beam vibration using smart materials has been subsequently investigated by researchers over the
past two decades. In more recent years, several studies have been presented, which discuss and compare
different active control approaches, such as positive position feedback (PPF) [7,8], strain rate feedback (SRF)
[8,9] and direct velocity feedback (DVFB) [7,10]. PPF control is applied by feeding the structural position
directly to a compensator, whose output is fed through a fixed gain positively back to the structure, thus
achieving damping for a particular mode. In SRF, the derivative of the voltage from a piezoelectric patch
sensor (which is proportional to the strain rate) is fed to the input of a compensator, which applies its negative
output voltage to an actuator. SRF has a wider active damping region, as compared to PPF, and can stabilise
more than one mode. DVFB could be considered as the simplest way to implement active damping, since the
velocity signal measured by a sensor is electronically multiplied by a fixed gain and fed directly back to an
actuator.

Conventional collocated point sensor and actuator pairs offer an extremely effective way to implement
robust active feedback control systems, particularly when DVFB is used [11,12]. This strategy is
unconditionally stable for any type of primary disturbance acting on a structure, despite having a very
simple controller. In practice, non-collocated sensor and actuator pairs are often used due to physical
limitations of the system. This will affect the closed-loop system stability [13,14]. Among sensors and
actuators, piezoceramic elements have been used to suppress unwanted structural vibrations since 1987 [15].
Feedback control has been used with a non-collocated velocity sensor and a moment-pair generated by a
piezoceramic element by Burdess and Fawcett [16] and in the work by Variyart et al. [17]. Other aspects of this
actuator–sensor pair in a feedback control system have been studied previously by Hong and Elliott [18] and
Gardonio and Elliott [19].

In the present work, DVFB control of a flexible beam is further investigated, using a physically collocated
accelerometer and a piezoelectric patch actuator applied to the structure. The aim of this paper is to explore
the limits of DVFB control, which is possibly the simplest feedback control strategy, and to compare the
results with the best that could be achieved with the same actuator and sensor configuration, i.e. feedforward
control. The control problem is formulated up to about 3 kHz as a vibro-acoustic problem, where the mean
vibration reduction over a low audio frequency range is desired. The performance of the control system is
presented in terms of the total vibrational kinetic energy of the beam. Simulations are presented along with
some experimental results.

Throughout the paper a damping ratio of 0.01 is assumed for the beam. The improvement in the
performance of the DVFB control system achieved by attaching a point mass to the beam at the sensor
location is investigated by way of some simulations.
2. Fundamental limitation of active vibration control

There is a fundamental limit to the performance of an active vibration control system for a given actuator
and sensor configuration in terms of the kinetic energy of the structure. This can be determined by conducting
an analysis of the feedforward control of the system.

Consider the aluminium beam depicted in Figs. 1a and b with two PZT actuator patches attached to it, one
of which acts as the primary excitation source and the other as the secondary source. The dimensions and the
material properties of the beam and actuators are given in Tables 1 and 2, respectively. It is assumed that the
beam in Fig. 1 has simple supports and Euler–Bernoulli beam theory is used. This theory only approximates
the dynamic behaviour of the beam at higher frequencies, but is sufficient for the purposes of this paper.
Assuming harmonic vibrations, the time-averaged total vibrational kinetic energy of the structure is given
by [2]

KE ¼
m

4
qHðoÞqðoÞ, (1)

where q(o) is the vector of velocity modal amplitudes and the superscript H denotes the Hermitian transpose,
m is the mass of the beam and o the circular frequency. The relationship between the two moment-pairs that
are applied to the beam by the piezoelectric patch actuators, Mp and Ms, is given by Ms ¼ G(jo)Mp, where
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Fig. 1. Beam with attached piezoelectric actuators: (a) picture, (b) sketch.

Table 2

Piezoelectric actuator properties

Length (mm) Width (mm) Thickness (mm) Young’s modulus (Nm�2) Dielectric constant (mV�1)

25 25 1 6e10 212e�12

Table 1

Beam properties

Length (mm) Width (mm) Thickness (mm) Young’s modulus (Nm�2) Mass density (kgm�3)

395 25 5 7.1e10 2700
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G(jo) is the frequency response of the feedforward controller [2]. The vector of velocity modal amplitudes may
be written as

qðoÞ ¼ qpðoÞ þ qsðoÞGðjoÞ, (2)

where qTp ðoÞ ¼ fqp1ðoÞ; qp2ðoÞ; . . . ; qpnðoÞg and qTs ðoÞ ¼ fqs1ðoÞ; qs2ðoÞ; . . . ; qsnðoÞg are the vectors of velocity
modal amplitudes due to the primary and secondary sources, respectively, where

qpnðoÞ ¼
Mpo f0n xp � ðdp=2Þ

� �
� f0n xp þ ðdp=2Þ

� �� �
mðo2

nð1þ jZÞ � o2Þ

and

qsnðoÞ ¼
Mso f0n xs � ðds=2Þ

� �
� f0n xs � ðds=2Þ

� �� �
mðo2

nð1þ jZÞ � o2Þ

with f0n denoting the spatial derivative of the nth mode shape, xp and xs denoting the coordinates of the
central positions of the actuators, respectively, Z denoting the loss factor of the beam, and dp and ds are the
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lengths of the primary and secondary actuators, respectively. Substituting Eq. (2) into Eq. (1) gives

KE ¼
m

4
½G�qHs qsG þ G�qHs qp þ qHp qsG þ qHp qp�, (3)

where the superscript * denotes the complex conjugate and the dependence on frequency has been omitted for
clarity, as will be done henceforth in the paper. This has a global minimum [2] when G ¼ �½qHs qs�

�1qHs qp,
which is given by

KEmin ¼
m

4
qHp ½I� qs½q

H
s qs�

�1qHs �qp. (4)

The minimum kinetic energy that can be achieved using the single primary and secondary piezoelectric
actuators can be calculated using Eq. (4), and this is plotted, together with the kinetic energy without control
in Fig. 2a for a unit primary moment-pair applied.

To compare the theoretical predictions with measurements, it is necessary to know the relationship between
the applied voltage, V, to the piezoelectric actuator, and the moment-pair, M, applied to the beam. This is
given by [20]

M

V
¼ d31

6EbIb

tbtp

� �
ÊT̂ð1þ T̂Þ

1þ 4T̂Ê þ 6T̂
2
Ê þ 4T̂

3
Ê þ T̂

4
Ê

2

 !
,

where d31 is the dielectric coefficient of the piezoelectric actuator given in Table 2, Eb is the Young’s modulus
of the beam, tb and tp are the thicknesses of the beam and piezoelectric actuator, respectively, and T̂ ¼ tp=tb,
Ê ¼ Ep=Eb, where Ep is the Young’s modulus of the piezoelectric actuator.

The kinetic energy of the beam may also be calculated from measured data. This is achieved by measuring
the velocity at an equidistant number of points on the beam and using the relationship

KE

jMpj
2
�

m

4r
yHy, (5)

where yT ¼ {Y(x1),Y(x2),y,Y(xr)} is the r-length vector representing the velocities per unit primary excitation
at r positions on the beam. This can be written in terms of the mobility vectors yp,ys so that

yðoÞ ¼ yp þ ysG, (6)

where yTp ¼ fY p1;Y p2; . . . ;Y prg and yTs ¼ fY s1;Y s2; . . . ;Y srg, with the mobilities given by

Y pr ¼
vðxrÞ

Mp

¼ jo
X1
n¼1

fnðxrÞ

Mnðo2
nð1þ jZÞ � o2Þ

f0n xp �
dp

2

� �
� f0n xp þ

dp

2

� �� �

and

Y sr ¼
vðxrÞ

Ms

¼ jo
X1
n¼1

fnðxrÞ

Mnðo2
nð1þ jZÞ � o2Þ

f0n xs �
ds

2

� �
� f0n xs þ

ds

2

� �� �
,

respectively, where v(xr) is the lateral velocity of the beam at the rth position. Substituting Eq. (6) into Eq. (5)
and following the procedure given in Ref. [2] the gain that minimises the kinetic energy can be determined. It is
given by G ¼ �½yHs ys�

�1yHs yp and the resulting kinetic energy by

KEmin

jMpj
2
¼

m

4r
yHp ½I� ys½y

H
s ys�

�1yHs �yp. (7)

An experiment was conducted to measure the kinetic energy of the beam. It was excited by each
piezoelectric actuator in turn and the corresponding velocities at 13 equidistant points were measured on the
beam using a Polytec’s PSV-300 scanning laser vibrometer.

The kinetic energy of the beam was calculated using experimental data. Using the formulation described
above the kinetic energy without control and that predicted if feedforward control was applied, is calculated
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Fig. 2. Kinetic energy of the simply supported beam with and without feedforward control: —— uncontrolled; - - - - optimally controlled:

(a) theoretical simulation, (b) simulation based on measured data.
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and plotted in Fig. 2b. Comparing Figs. 2a and b, it can be seen that there is good agreement between the
theoretical and the measured results, which validates the assumption about the boundary conditions and
damping in the beam.

One way of quantifying the control performance as a single number is to calculate the area under the graph
of the kinetic energy as a function of frequency with and without control, and then forming their ratio to give
the overall kinetic energy reduction in the frequency band of interest (0–3.2 kHz) [11]. The theoretical and
experimental results are calculated to be �11.46 and �11.51 dB, respectively.
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Fig. 3. Velocity feedback control system.
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3. Direct velocity feedback control

In this section, some experiments using velocity feedback control are described, and the results are
compared with those in the previous section. For the feedforward control strategy discussed above, the
optimisation was conducted at each frequency, but in feedback control all frequencies are considered at the
same time. The aim is to investigate the degradation of performance if access to the primary source is not
possible and the simplest possible feedback control system is implemented. Consider the system shown in
Fig. 3, in which the feedback system is depicted. An accelerometer is used as the sensor (whose output is
integrated to give velocity), and although it is positioned in the centre of the piezoelectric actuator patch it is
not collocated in the control sense (‘energetically collocated’ according to Preumont [3]), since the moments
that are applied to the beam are at the ends of the actuator. Thus, the control system will only be conditionally
stable [3].

The secondary moment-pair acting on the beam is related to the measured velocity by

Ms ¼ �gvs, (8)

where g is the feedback gain and vs is the velocity of the beam at the sensor location, which may also be
expressed as a combination of the velocity provided by the primary and secondary excitation as

vs ¼ Y psMp þ Y ssMs, (9)

where Yps and Yss are the mobilities of the beam at the sensor location due to the primary and secondary
excitations, respectively. The relationship between the primary and secondary moment-pairs may thus be
obtained by substituting Eq. (8) into Eq. (9) and rearranging to give

Ms ¼Mp

�gY ps

1þ gY ss

. (10)

The kinetic energy can be determined using Eq. (1), where the vector of modal amplitudes is now given by

q ¼ qp þ qs
�gY ps

1þ gY ss

. (11)

Ignoring stability issues for the moment (they will be addressed later), it is helpful to consider the system
depicted in Fig. 3 under two extreme conditions: that of zero gain and infinite gain. The predicted kinetic
energy of the beam under these conditions is plotted in Fig. 4. It is evident that the effect of control in this case
is not to add damping to the structure, but to change the properties of the structure such that it has new
resonance frequencies, as discussed by Gardonio and Elliot [19]. The actuator has created an active boundary
condition, whereby, at the position of the accelerometer the lateral displacement of the beam is significantly
decreased. At this position, the shear force is also very small and the bending moment is very large. Comparing
Fig. 4 with Fig. 2a, it is clear that (fortunately) a smaller gain is required if the response at the original
resonance frequencies is to be reduced without amplifying the response at the new resonance frequencies.

The optimum gain can be calculated by plotting the total kinetic energy reduction as a function of the
feedback gain as shown in Fig. 5 to give an approximate value of about 104N s. Also plotted in Fig. 5 is the
point at which the system becomes unstable. The Nyquist and Bode plots of the predicted open-loop frequency
response function (FRF) of the system are depicted in Figs. 6a and b, respectively. It can be seen that the
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Fig. 4. Kinetic energy of the beam: —— g ¼ 0Ns (uncontrolled); - - - - g-N Ns.
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Fig. 5. Change in kinetic energy in the frequency band 0–3.2 kHz using DVFB. The dot denotes the gain at which the system becomes

unstable.
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frequency at which the system becomes unstable is about 67 kHz, corresponding to a critical gain of about
3600N s. The wavelength in the beam at this frequency is about 25mm, which is the length of the actuator.
The gain could be increased by shortening the actuator, but then it would be more difficult to excite the beam
at lower frequencies as discussed by Brennan et al. [20].

To illustrate the attenuation that could be achieved with this gain, the kinetic energy of the beam with and
without control is shown in Fig. 7. By comparing this with Fig. 2a, it can be seen that although there is
significant reduction in the kinetic energy at frequencies close to the resonance frequencies, the overall
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Fig. 6. Open-loop FRF (theoretical simulation): (a) Nyquist plot, (b) Bode plot.
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performance of the feedback control system is inferior compared with the feedforward control system and the
actual reduction that could be achieved could be about 5 dB.

In a real system, the stability and performance are also influenced by the FRFs of the instrumentation as
well as the structure to be controlled. In the simple system considered here, this consists of an accelerometer/
signal conditioner (PCB model 352C22/442C04), with FRF Ha, an in-house manufactured integrator/power
amplifier unit Hi and the PZT actuator Hp. In this case, the vector of velocity modal amplitudes is given by

q ¼ qp þ qs
�gHiHaHpaps

1þ gHiHaHpass

, (12)
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Fig. 7. Kinetic energy of the beam with and without velocity feedback control (theoretical simulation): —— uncontrolled; - - - -

g ¼ 3600N s.
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where aps and ass are the accelerances at the sensor location due to the primary and secondary moment-pair,
respectively.

The frequency response of the accelerometer/signal conditioner and the piezoelectric actuator were
measured together with that of the beam. This is shown in Fig. 8a and is compared with a theoretical
prediction of the accelerance of the beam alone. It can be seen that the measured and predicted results start to
deviate above about 10 kHz, and the resonance at about 35 kHz is probably due to the accelerometer. The
FRF of the integrator and power amplifier unit is shown in Fig. 8b. It can be seen that the phase begins to
deviate from the ideal just below 1 kHz and that the amplitude also starts to deviate above about 10 kHz.

The effects that these components have on the performance of the system can be evaluated by substituting
the measured FRFs into Eq. (12) and combining this with Eq. (1). Figs. 9a, b shows the Nyquist and Bode
plots of the open-loop FRF of the experimental control system, while the total kinetic energy reduction is
shown in Fig. 10 together with that in the ideal case when the instrumentation is assumed to be perfect. The
gain at which the system becomes unstable is also marked. It can be seen that the instrumentation is
detrimental to both the performance and stability; the integrator and amplifier unit being the main cause of
the reduction in performance and only about 3 dB reduction would be possible in a realistic system.

Using the setup shown in Fig. 11, an experiment was conducted in which the feedback system was
implemented and different gains were applied. The acceleration signal from the accelerometer was supplied to
the signal conditioner and then integrated and amplified by the power unit, which fed the signal back to the
secondary piezoelectric actuator. For each gain, the velocities of all the thirteen points were measured
according to the experimental procedure described in Section 2 and the total kinetic energy reduction of the
system in the frequency range of 0–3.2 kHz was calculated using Eq. (5).

The experimental result is compared to the simulation based on experimental data in Fig. 12. It can be seen
that the performance is consistent and slightly less than that predicted in the simulation. It can also be seen
that there is a sudden increase in the kinetic energy in the experimental system due to instability.

4. Improving the performance of the velocity feedback control system

The fundamental problem with the combination of a piezoelectric actuator and an accelerometer is that the
open-loop frequency response of the beam does not roll-off with frequency, so that the phase-lag in the
feedback loop is critically important. One way to overcome this problem would be to use PPF control as
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Fig. 8. Measured frequency responses of the components in the feedback loop: (a) FRF of the combination of the beam, accelerometer

and piezoelectric actuator: —— measured; - - - - theoretical; (b) FRF of the integrator/power amplifier unit: —— measured; - - - - ideal.
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discussed in Ref. [21], where second order filters are used to add active damping at the resonance frequencies,
and the filters roll-off above their resonance frequencies. Of course, this means that a more complex controller
is required. An alternative approach is to force the response of the structure to roll-off with frequency. This
can be achieved by attaching a point mass to the structure at the accelerometer position, as depicted in the
sketch of Fig. 13. It is to be noticed that at such high frequencies, as those being considered, the dynamic
response of the accelerometer also plays an important role in determining the sensor–actuator response, as
discussed by Gardonio et al. [22].

The kinetic energy of the beam with added mass may be estimated again using Eq. (5), where, in order
to take into account for the presence of the point mass, the r-length vector of velocities is written as
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Fig. 9. Open-loop FRF (simulation based on measurements): (a) Nyquist plot, (b) Bode plot.

G. Gatti et al. / Journal of Sound and Vibration 303 (2007) 798–813808
vT ¼ fv1; v2; . . . ; ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma þm=r

p
=
ffiffiffiffiffiffiffiffi
m=r

p
Þvs; . . . ; vrg (in this case, r being such that the centre of the sth beam

element coincides with the sensor location). Each velocity is now due to either the primary and secondary
moment-pairs or the force Fm due to the point mass ma, i.e. v ¼ vp+vs+vm. This can be written in terms of
the vectors of mobilities, yp,ys,ym, where this latter is related to the velocities by vm ¼ ymFm, and
ym ¼ {Ym1,Ym2,y,Ymr}, with the mobility of the beam due to a point force given by

Y mr ¼
vðxrÞ

Fm

¼ jo
X1
n¼1

fnðxrÞfnðxsÞ

Mnðo2
nð1þ jZÞ � o2Þ

.
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Fig. 11. Experimental set-up for the feedback control tests.
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Fig. 10. Change in kinetic energy in the frequency band 0–3.2 kHz : —— theoretical simulation; - - - - off-line simulation based on

measured data.
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The velocity at the sensor position is now written as vs ¼ YpsMp+YssMs+YmsFm, where Fm ¼ �vs/Ym is the
force applied to the beam by the attached point mass and Ym ¼ 1/joma is its mobility. It should be noted that
the mobility of the point mass reduces with frequency, which has the effect of causing a roll-off in the open-
loop FRF of the system.

The kinetic energy of the mass-modified system may be evaluated using Eq. (5) and the new expression for
the vector of velocities given by

v

Mp

¼ yp � ym
Y ps

Y m þ Y ms

� �
þ ys � ym

Y ss

Y m þ Y ms

� �
�gY psðY m=ðY m þ Y msÞÞ

1þ gY ssðY m=ðY m þ Y msÞÞ
. (13)
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Fig. 13. Sketch of the beam with attached point mass at sensor location.
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Fig. 12. Change in kinetic energy in the frequency band 0–3.2 kHz: —— simulation based on measured data; - - - - experimental results.
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Inspection of Eq. (13) shows that the open-loop response function is modified by the term Ym/(Ym+Yms).
This results in an increase of the stability margin such that a much larger gain can be applied.

The critical gain may be estimated by studying the Nyquist plot of the open-loop FRF, for different values
of the attached point mass expressed as a percentage of the mass of the beam, and the corresponding kinetic
energy reduction may be evaluated. This is plotted in Fig. 14 together with the ideal minimum reduction not
considering stability issues. It shows that the minimum kinetic energy for the case limited by stability
requirements reaches the minimum for the ideal system when ma is greater than about 15% of the beam mass.

If, for example, a point mass of 10% of the beam mass is attached, the reduction in kinetic energy that could
be achieved before the system becomes unstable is about 8 dB as shown in Fig. 15. The corresponding
predicted kinetic energy as a function of frequency is shown in Fig. 16 where the maximum gain of 13627N s
has been applied.

5. Effect of damping in the beam

Throughout the paper a damping ratio of 0.01 has been assumed for the beam, and this was found to be a
reasonably accurate estimate of the actual damping of the beam used in the experiments. Further simulations
were conducted to determine the effect of damping on the feedforward and feedback control strategies. For
feedforward control, it was found, that higher damping had no effect on the kinetic energy after control
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Fig. 14. Kinetic energy reduction in the frequency band 0–3.2 kHz as a function of the percentage of the point mass compared to the beam

mass: —— limited by stability; - - - - ideal minimum.
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Fig. 15. Effect of adding a point mass on the reduction of the kinetic energy: —— ma ¼ 0%; - - - - ma ¼ 10%.
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(as expected). This means that the effectiveness (the overall kinetic energy reduction in the frequency band of
interest (0–3.2 kHz)), as defined at the end of Section 2 is not as good, because the kinetic energy of the beam
before control is less due to the inherent damping. For feedback control, it was found that the overall kinetic
energy can be reduced if damping in the beam is increased, but this is largely due to the inherent damping
rather than feedback control. Thus, it can be concluded that the feedforward and feedback control strategies
are most effective—compared to the uncontrolled case—when the damping in the beam is light.
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Fig. 16. Kinetic energy of the beam with velocity feedback control and a point mass of 10% of the mass of the beam applied at the

accelerometer position: —— uncontrolled; - - - - g ¼ 13627N s.
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6. Conclusions

This paper has described a study into DVFB control of beam vibration. The aim was to investigate the
effectiveness of such a simple control system using a single accelerometer and a piezoelectric patch actuator.
The accelerometer and the actuator do not form a collocated pair in the control sense so the feedback control
system was only conditionally stable. The results were compared with a feedforward approach.

In the experimental work, the performance was limited by the non-ideal performance of the integrator and
amplifier. However, the fundamental limitation with the piezoelectric actuator/accelerometer pair is because
the structural response does not roll-off with frequency. To achieve this, and to improve the performance of
the system, a point mass of 10% of the total mass of the beam was added at the accelerometer position. The
resulting overall reduction of the kinetic energy in the frequency band 0–3.2 kHz was about 8 dB for velocity
feedback control and about 11.5 dB for feedforward control.
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